REFLECTION OF MARGNETO~ACOUSTIC WAVES
AT THE BOUNDARY BETWEEN TWO MEDIA WITH
FINITE ELECTRIC CONDUCTIVITY

(OTRAZHENIE MAGNITOZVUKOVYKH VOLN NA GRANITSE
RAZDELA DVUXH SRED 8 XONECHNOI ELEKTROPROVODNOST'IU)

PMM Vol.29, N 2, 1965, pp. 357-361

L.Ja. KOSACHEVSKII
(Donetsk)

(Received June 15, 1964)

In the paper [1], the problem of the reflection of magneto-acoustic waves
from a plane boundary separating a fluid and an elastic medium with infinite
electrlcal conductivity was solved. Below, the analogous problem for media
with flnite electrical conductivity is solved. The amplitude coefficients
for reflection and refraction are calculated for the case of a magnetic
fleld, To the same approximation, the question of the change of the form
of reflected pulses, due to dependence of the reflection coefficients on
frequency, 1s investigated.

1. Basioc equations. We shall assume that the fluid and elastic media
are homogeneous and are in a homogeneous steady magnetic fileld H . We neg-
lect the viscosity and heat conductivity of the media.

The propagation of plane waves in the fluid is described by Equations [ 2]

o ic 1
kXE:?h’ E=mkxh——7vxﬂ, k-h=0

ov =§ok+ HX (k Xh), op=pws k-v (1.1)
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Here, Kk 1s the wave vector, w the frequency, B the intensity of

the induced electric fleld, h thé small change in magnetic field intensity
in the wave, v the veloclty of the fluid, p the hydrodynamic pressure,
po 8nd o, the density and conductivity, respectively, of the fluid, g, the
ordinary speed of sound in the fluid, , the velocity of light. The magnet-
ic permeabllity of both media 1s taken to be unity. We take the xy plane
to be the boundary between the two medla. The vectors H and k will be
considered to be in the xz plane.

For waves in which the vectors v , h 1lie in the xz plane, Equations
{1.1) lead to the dispersion equation

u? — (1 ) u 4 P cos® a + iwng (u — 1) =0 (1.2)
u = (@ /kay)?, Yo = H? ] 4npgas®, Mo = €2/ 4noga,?
Here, uy and t% represent the squares of the phase veloclty and the mag-
y

netic field intensi in dimensionless form, a 1s the angle between the
vectors kX and K .
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The two roots, uy, and y, , of Equation (1.2) correspond to fast and slow
magheto-acoustic waves for small wn, . We shall restrict ourselves to the
case of weak magnetic fleld, leg<< 1 , with accuracy up to small quantities
of the first order, we have

uy = 1 4 1P, sin? a, Uy = Po €0 4 — I® 1), (1.3)

Thus, to the approximation made, the first wave propagates without attenu-
ation with velocity somewhat higher than the ordinary sound speed in the
fluid. The second wave will be an attenuated one.

From Equations (1.1), we obtain

h,, = Avvvz’ Evy = B, —pr= Zvvvz (v=1.2) (1.4)
A, = H(u,— 1) Vuk,/agpB, B,= — H (u,— 1) uk,/ cp83,
’ Z, = — pgay V u k3,7 sin %, B, = kyu,cos @ — k&, cosa,

where ¢ 1s the angle of inclination of the magnetic field H to the x-axls,

z, and BV/AV are the acoustic and electromagnetic impedances.

Waves with the vectors v , h perpendicular to the xz plane (Alfven
waves) propagate independently of the magneto-acoustic ones and, 1n our
approximation, have a velocity which colncides with the velocity of the slow
magneto-acoustic wave.

The propagation of waves in an unbounded elastic conducting medium was
investigated in [3 and 4]. The equations for plane waves in thils medium may
be written in the form

—oh =k X (v X H) - ia?nk?h
— (0%a?) v = k (k-v) + Ek X (kK X V) — (oW/H?) H X (k X h) (1.5)
P,,= —o A (kv) 4+ 2ukw,], P,,= —potky, 4+ kv,

2z
a?= (A4 2u)/p, bEP=p/lp, E=02/0a?, 1n=c/4nca?, Y = H?/4npa®

Here, @ and » are the veloclties of purely elastic longitudinal and
transverse waves, p , A\ and pu are the density and the Lamé constants of
the elastic medium, ¢ 1is the conductivity, &, and B, are components of
the stress tensor of the elastic medium. For waves which are polarized in

the xz plane, we have the dispersion equa-
tion

(- S ud E 4P (costa + £ sin® a) -
Fionu (u—1) (u— 8 =0, u = (0/ ka)? (1.6)

For small wn and § , the roots of this
equation will be

us = 1 4 P sin? a, uy = &4 Ppcosta
Uy = — 0N (1.7)

us; and y, correspond to fast and slow
magneto~elastic waves, which in the 1limit

¥V = O become purely elastic longitudlnal
and transverse waves, The attenuation of
these waves may be neglected. The root yg
corresponds to a strongly attenuated wave, which vanishes for infinitely
large conductilvity of the medium., According to (1.5), for waves in an elas-
tic medium, we have

hVA' = AV
A, = (H/ayB,) u, " (u, — 1) (u, — &) k,,, B,= — (H/c¥8) (u, — 1) (u, — &) [(1.8)
Z,=—(pa/3,) uv_'l/2 [(w, — &) (k,sina, — 28k, sin @) — 28 (1 — &) K,k k,Tcosa,]

v Evy:Bv

v7vz?

P,,=2Zy

Vo2

P‘/.‘CZ = XVUV.’.

vz?
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(1.8)
X, = — (pak/B,) u, " [(u, — 1) (k,cos a, + 2k, sin ¢) + 2 (1 — &) k .k, &k, Isin a,] cont.
B, =k, (uy— & cosp— (1 — &)k, cosa, v=3,4,05)

For waves which are polarized perpendicular to the xg plane, the disper-
sion equation has the form

u? —u (g 4 peos? a) +ion(w—§) =0
ug = & + Pcos? a, u; = —ien

correspond to a slightly modified transverse wave and a strongly attenuated
electromagnetic wave which vanishes completely for infinite conductivity.

Its roots

2. Refleotion of magneto=-acoustioc waves. At the boundary separating two
media, continuity is required of the normal component of veloclty, the tan-
gentlal components of the magnetlc and electric flelds and the normal pres-
sure. Tangential stresses should be absent., For waves polarized 'in the xz
plane, these conditions glve

[o,] = [hy] = [E] =0, P,=—p Py=0 @.1)

where [v] 1is the jump in the quantity » at the boundary.

Let a fast magneto-acoustic wave from the fluid impinge on the boundary
(Fig.1). Quantities relating to the incident disturbance will be denoted by
a prime. To satisfy the five boundary conditions (2.1), it is necessary to
assume that on the boundary the incident wave produces s system of five waves
— two magneto-acoustic ones in the fluid and three in the elastic medium.

The angles of incidence, reflection and refractlon are connected by the rela-
tion (Snell's law)

sin®’ sin 6, sin 6, __ GosinB;  agsin B, aosinbs
V' Vu  Vu  aVu  aVu  aVu

According to (1.3} and (1.7), with accuracy up to the principal terms, we
have

a9 . ay a¢ sin Oy
2 — —2 5in 6, = —sin O, = —F——= (2.2)
V P, sin® ¢ — iom, a T T eV —iam

Taking the amplitude v,,’ to be unity and taking into account (1.4) and
(1.8), we obtailn from (2.15 a system of linear equations for the amplitude
coefficlents of reflectlon and refraction W, for vy,

sin 0,

sin 8," = sin 6, =

5 5 5 5 ]
Nw,=1, 3 aw,=4/, D BW,=B/ I ZW,=2' X XW,=0

v=1 v=1 v=1 v=1 v==8

Up to the principal terms, the solution of thls system has the form

W, = W,° — &@;_’s;_"s_el, W, = %aoY sin @ sin 6, (2.3)

Ya Y sin @ sin 6 sin (20, — 6,)
W, = (1 — W,°) cos 29, + _—Q—(ZT——f-—Zl)—l Z, +Zy ——W—.cot-es

¥ sin © sin 8 .
W,=2(1 — W,°) sin? 0, — % (Zy + Z; cos 26, + Z, sin 20,tan6;)
n

w,=— Ly —Tena, Q =a ¥V =ion + as V o sint ¢ — iwm,
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(2.3)
2 sin @ sin (20, — 6j) cont.
Y=17 %7 {Zn“‘" 0+ 2 cogw,
z, — 2, .
W= —Z:——_F—Z—l—, Z, = Zycos? 20, + Zsin® 26,
. Polo Z.= PO Z, = pb
L= os 6, 5 CosO, ‘" “cos 0,

The quantlties Ww,° and 2, represent, respectively, the coefficlent of
reflection and the total acoustlc impedance of the boundary in the absence
of the magnetic fileld,

Equations (2.3) show that a weak magnetic fleld changes the ordinary
acoustic coefficlents of reflection and refractlon by a small quantity of
order V,e,/0 and ¢g/Q , respectively,, The coefficlent ¥, 1is a small
quantity of much higher order, ¥aQ~! (on) f, and, therefore, in the first
approximation, it may be assumed that the incident wave excliltes only two
magneto-elastic waves in the elastic medium. For normal Incidence of the
wave on the boundary, the magnetlc field has no effect on the coefflclents
Wy (¥ = 0). For inclined incldence, only a magnetic field parallel to the
boundary produces no effect.

3. Refleoction of magneto-aocoustic pulses. Now let us assume that a pulse
of the form [5]

p ) =

€ ¢ z sin 0, 4+ z cos 6y’ i sin 0, 4- z cos 0,
2 z 1+ 5= — — = -
& + £ Qe V“ll Ao
having a plane front, impinges from the fluid onto the separation bdundary.
Here, p 1s the pressure, ¢ 1s a parameter characterizing the width of

the pulse. A Fourler integral resolution of the incident and the first
reflected pulses has the form

o0

PO =Re\ 40, p()=Re
0

Wyem(e-ie g,

Aad S—Q

¢ . z8in 0; — zcos §;
IN————————'—

(3.1)

g

For infinite conductivity ol toth media and angles of incldence less than
the 1limiting angles for total internal reflections the coefflclent of reflec-
tion W, of a plane harmonic wave 1is real and does not depend on frequency.
Therefore, the form of the reflected pulse will be identical to that of the
incident one.

Let us investigate the change of form of the reflected pulse for finite
electrical conductivity in the elastic medium and for given angles of 1nci-
dence., We tace the conductivity of the fluld medium to be infinite (ny,= 0).

According to (3.1) and (2.3),

p1 (&) = W1° p (L) — Y2 PoaeY? cos 6; Re Jy (3.2)
7o (io exp (— po) do _ 1 [io Vo exp (— po)do
1——0 aV —ion+a, ¥V¥osing al —iy o — i3 -
o e] _ ~ g
— VES EE:,__‘_%)M], p=e— i1, B:a__‘,?q;::l:]l ¢

<

Making the substitution w = x* in the first integral in the square
brackets, we obtain [6]
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JyaVn'= Vailp — VB (2 V= Erfe (Y — Bp) — i Ei (iBp)] exp (— iBp)
Erfc () = Yy [1 — @ (2)] 3.3)

Here, &(x) 1s the probability integral, Ei(x) 1s the integral exponen-
tial function. If B|p|> 1, use can be made of the asymptotic formula

Erfc (V z) 2«’57170:(1——1—)(", Ei (—z)z——i—(i—i)e’x

2x z
and the expression for the reflected pulse takes the form

Py (&) = Vap (&) + —a VMY cos8y {‘”T e+ VVortite+
aosin?@ (2 4§27 | 8

e ely
-V VET L —el -] 3.4)
VB @+ 5o
V= W,°— V\IJoY“ cos 0,
2sing
According to (2.3), the quantity V, represents the coefflicient of reflec-
tion of a strong magneto-acoustic wave from the boundary between media with
infinite conductivity. The first term of Expression (3.4) corresponds to a

reflected pulse of the same form as the incident one. The remaining terms
correspond to pulses of changing form,

Putting (,= O , we determine from (3.3) the pressure at the front of the
reflected pulse
P (0)=W,Lp©) — Yy VP BY2 cscp{V,n/Be — n [cos Be—(cos Be — sin Be)
C (V' Be) — (cos Be 4+ sin Be) S (V Be}] + ci (Be) sin Be — si (Be) cos Be}  (8.5)
p0)=1/e

Here, S(x) and C(x) are Fresnel integrals, si(x) and ci(x) are the
integral sine and cosine.

For every narrow pulses (e - 0), Equation (3.5) gives

) ¢ S —
PO = Wi p (O = 5= VTimp ) (2.6)

For Be>>1 we have from (3.4},

2nn Y2 cos 0y ¥
0) = Vyp (0) + 2V 2 Y2 080y g 3.7)
p1 (0) w 0) + 8a, S’ @ r™(0)

The dependence of the coefficients #,, ¥, and ¥, on frequency 1s the
same as in W, . The formulas for the second reflected pulse and the pulses
transmitted into the elastic medium are analogous to (3.3) to (3.7)
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