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In the paper Cl], the problem of the reflection of magneto-acoustic waves 
from a plane boundary separating a fluid and an elastic medium with Infinite 
electrical conductivity was solved. Below, the analogous problem for media 
with finite electrical conductivity is solved. The amplitude coefficients 
for reflection and refraction are calculated for the case of a magnetic 
field. To the same approximation, the question of the change of the form 
of reflected pulses, due to dependence of the reflection coefficients on 
frequency, Is Investigated. 

BaBiO rqurtionr We shall assume that the fluid and elastic media 
are'iomogeneous and ari In a homogeneous steady magnetic field H . We neg- 
lect the viscosity and heat condu&lvlty of the media. 

The propagation of plane waves In the fluid is described by Equations 

kxE=;h, 
ic 1 

E=4naokxh-yvx~, k.h=O 

1 
ov==;k+ gHX(kxh). op=poa$k.v 

c 23 

(1.1) 

Here + k Is the wave vector, UI the frequency, B the Intensity of 
the Induced electric field, h th8 small change In magnetic field Intensity 
in the wave, v the velocity of the fluid, the hydrodynamic pressure, 
PO and a,, the density and conductivity, resp&lvely, of the fluid, the 
ordinary speed of sound In the fluid, the velocity of light. The '&et- 
lc permeability of both media Is taken "to be unity. We take the rp plane 
to be the boundary between the two media. The vectors Ii and lc will be 
considered to be In the x.7 plane. 

For waves In which the vectors v , h lie In the XI plane, Equations 
(1.1) lead to the dispersion equation 

(W 
u = (O/kuo)a, $0 = * / 4xprJao~, 

Here, IA and $ 
? 
represent the squares of 

netic field lntensl y in dimensionless form, 
vectors 1( and H . 
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the phase velocity and the mag- 
a Is the angle between the 
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The two roots, u, and w2 , of Equation (1.2) correspond to fast and slow 
magneto-acoustic waves for small 
case of weak magnetic field, 

"no. We shall restrict ourselves to the 

of the first order, we have 
ti,-= 1, with accuracy up to small quantities 

u1 = 1 _l:qo sin2 a, uc = l&o co@ 0. - io ?jo (1.3) 

Thus, to the approximation made, the first wave propagates without attenu- 
ation with velocity somewhat higher than the ordinary sound speed in the 
fluid. The second wave will be an attenuated one. 

From Equations (l.l), we obtain 

h,, = A,v,,, E,, = BVuvz, - p = Z,v,, (v = 12) (1.4) 

A, = H (u,, - 1) I’-u,k,, I aoW3,r B, = - H (uv - 1) u,k, / c+o(iv 

. Z, = - poao J’-u,k$,-’ sin civ, p, = k,u, cos q - k,, cos a, 

where cp Is the angle of Inclination of the magnetic field 

Z" 

H to the x-axis, 
and B,/A, are the acoustic and electromagnetic Impedances. 

Waves with the vectors v , h perpendicular to the XE plane (Alfven 
waves) propagate Independently of the magneto-acoustic Jnes and, In our 
approximation, have a velocity which coincides with the velocity of the slow 
magneto-acoustic wave. 

The propagation of waves In an unbounded elastic conducting medium was 
Investigated In [3 and 41. 
be written In the form 

The equations for plane waves In this medium may 

-coh=k x (i. x H)+ia2qkah 

- (o2/4 v = k (k.v) + Ek x (It x v) - (o$/IP) H x (k x h) (1.5) 

pz, = - 6 11 W + +k,v,l, P,, = - pm-‘(kp, $ k,v,) 

a2 = 0 4- 211)/p, 
Here, and b 

transverse'waves 
the elastic medlLm,P 
the stress tensor of 

b2 = p / p, E = b2 / a2, q = c2 / 4naa2, II, = Ha / &pa2 

are the velocities of purely elastic longitudinal and 

& 
X and p are the density and the Lame constants of 
is the conductivity, G. and P,. are components of 

the elastic medium. For waves which are polarized In 
the XH plane, we have the dispersion equa- 
tion 

0 

L- 

z" -- (1 + j -19,) u $ E I- $ (c0s2 r + 5 sin2 a) + 

j- io~)u-~ (a - 1) (0 - E) = 0, u = (o / k@ (1.6) 

s For small WV and $ , the roots of this 
equation will be 

L '. s 

?v 

ug = 1 + ‘Ic) sin2 c1, up = E ++ COG Y, 

: % 4 
1‘6 = - iw?j (1.7) 

2; 
ks 4 w3 and uq correspond to fast and slow 

magneto-elastic waves, which In the limit 

Fig. 1 
I I 0 become purely elastic longitudinal 
and transverse waves. The attenuation of 
these waves may be neglected. The root u6 

corresponds to a strongly attenuated wave, which vanishes for infinitely 
large conductlv!fy of the medium. According to (1.5), for waves In an elas- 
tic medium, we have 

4, = AVvYz, E,, = B,rVZ. P,,, = z&t p,,, = X,bVZ 

A, = (H / a~#&) ZL-“~ (ur, - 1) (q - E) k,,, B, = - (H / ~$3”) (u, - 1) (u, - 8 !(I.& 

z, = - (pa./&) uy -'/* [(IL, - g) (k, sin rV-- 2Ekvx sin cp) - % (1 - E) k.,,k,,k,-l cos a,] 
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(1.8) 
X, = - (wM%) uy -‘A [(u, - 1) (k,cos a, + 2k,, sin rp) i- 2 (1 - E) k,,k,,k,-l sin a,] 

cont. 

P, = k, (u, - E) cos cp - (1 - E) k, cm a, (Y = 3, 4, 5) 

For ww~es which are polarized perpendicular to the x8 Plane, the dlsper- 
slon equation has the form 

us - u (5 f $cosa a) $ ioq (24 - E) = 0 

Its roots 
746 = F; f l#cosa a, UT = -ioq 

correspond to a slightly modified transverse wave and a strongly attenuated 
electromagnetic wave which vanishes completely for Infinite conductivity. 

2. Ratlrotlon of nngmto~aoourt~o w8vo8. At the boundary separating two 
media, continuity Is required of the normal component of velocity, the tan- 
gential components of the magnetic and electric fields and the normal pres- 
sure. Tangential stresses should be absent. For waves polarized ln the xz 
plane, these conditions give 

IV,1 = IA, 1 = W,l = 0, P,, = -p, P,, = 0 (2.1) 

where [u] Is the jump In the quantity v at the boundary. 

Let a fast magneto-acoustic wave from the fluid Impinge on the boundary 
p;;;;;. Quantities relating to the Incident disturbance will be denoted by 

. To satisfy the five boundary conditions (2.1), it Is necessary to 
assume that on the boundary the Incident wave produces a system of five waves 
- two magneto-acoustic ones in the fluid and three In the elastic medium. 
The angles of Incidence, reflection and refraction are connected by the rela- 
tion (Snell's law) 

sin 0; sin 0, sin 0, a0 sin 0, ~_-- ue sin 0, acsinO6 

l/uJ-l/~-Jf<-a~U, =a=- s)/G 

According to (l-3) ad (1.71, with accuracy up to the PrlnclPal terms, we 
have 

sin Ba a6 sin 8, -- sin 8,’ = sin 8, = vqo sina ‘p _ iorlo - “,” sin e, = F sin 04 = a v_, ioq (2.2) 

(l,;~klng the amplitude ' to be unity and taking lnto account (1.4) and 
we obtain from (2.y)'a system of linear equations for the amplitude 

coefficients of reflection and refraction W, for vyz 

B,W, = B1’, $ z,w, = z,’ i x,w, = 0 
“=I v=1 "=I "Zl "=Q 

Up to the principal terms, the solution of this system has the form 

(2.3) wl = wlo _ ~w~~;os h, Wz = ..$f a,Y sin ‘p sin e1 

w3 = (1 - W,O) cos 284 + 
+a Y sin cp sin 8, 

Q (Z, + Z,) [ 
ZI +a, 

sin (28, - e,) 
co5 01 

cot. ea 
I 

w, = 2 (1 - W,“) sin2 8, - 
qa Y sin q sin 0, 
Q (2, + Z,) 

(z, + z, cos 2e.f z, sin 2ep83 

W, = -$ Jf- ioqaY, P = a v--iioq + a,)/qosinPcp - ioqa 
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(2.3) 
cont. 2 sin 

y= 9, 

sin - 
Z,+Z, 

[ Zfltm%+Z1 (28, 0,) 1 cos 8, 

- 
W1° = Z, 21 ’ 

z,+z1 
2, = 2, toss 20, + Z, sina 20, 

zl=s* z,= pa, z,= pb 
1 cos 8, cos 0, 

The quantities W,O and 2, represent, respectively, the coefficient of 
reflection and the total acoustic Impedance of the boundary in the absence 
of the magnetic fleld. 

Equations (2.3) show that a weak magnetic field changes the ordinary 
acoustic coefficients of reflection and refraction by a small quantity of 
order $ca,/tI and $a/0 , respectively.,,SThe coefficient W, is a small 
quantity of much higher order, $aa-l(oq) , and, therefore, In the first 
approximation, It may be assumed that the incident wave excites only two 
magneto-elastic waves In the elastic medium. For normal Incidence of the 
wave on the boundary, the magnetic field has no effect on the coefficients 
w, (Y - Oj. For Inclined Incidence, only a magnetic field parallel to the 
boundary produces no effect. 

3. Raflrotiom of nlBgMto-roouBtio pulrrfl. Now let us assume that a pulse 
of the form [ 53 

P(5) = ,a ; 5s , 5 = 
z sin 8,’ + 2 cos el’ 

_ 

a0 vu1 
_ t z x sin % ; z cos e1 - t 

having a plane front, Impinges from the fluid onto the separation boundary. 
Here, 
the pulce. 

is the pressure, e Is a parameter characterizing the width of 
A Fourier Integral resolution of the Incident and the first 

reflected pulses has the form 

p (5) = Re s &‘-“do, pl (cl) = Re WIe-(“-icl)o do 

0 

Cl ~ * e1 - z cos e1 _ t 
(3.1) 

ellg 

For infinite conductivity o( Lsth media and angles of incidence less than 
the limiting angles for total Internal reflections the coefficient of reflec- 
tion W, of a plane harmonic wave Is real and does not depend on frequency. 
Therefore, the form of the reflected pulse will be identical to that of the 
incident one. 

Let us Investigate the change of form of the reflected pulse for finite 
electrical conductivity in the elastic medium and for given angles of inCi- 
dence. We tare the conductivity of the fluid medium to be Infinite (no= 0‘). 

According to (3.1) and (2.3), 

p1 (a = W,~P (cl) - va w,~a ~0s we 4 (3.2) 

00 

s exp (- pa) do 1 
J, = 

m I/w exp (- PLO) do 
-- 

o aV-- Tiiij + a0 vqo sin cp 
= - 

a1/--iq [S 0 - ip 
0 

exp (- PO) do 

I 

ao2$o sina cp 
o-iip ’ 

p = 8 - i61, P= 
a2 q 

0 

Making the substitution w = 2 in the first Integral in the square 
brackets, we obtain C61 
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J, av/rl= I/ni /p - v/PI2 v/R Erfc (1/- i@) - i Ei (&A)] exp(-- i@) 

Erfc (x) = '/Z~ [1 - Q (z)] (3.3) 

Here, +(x) is the probability integral, 
tial function. If PIpI>% 

El(x) is the Integral exponen- 
use can be made of the asymptotic formula 

Erfc(Jfq z2+ Ei(-z)=-_ 

and the expression for the reflected pulse takes the form 

Pl(b3 = VlP (51) + a Jf/,Y2 cos tJ 

i - [(e + 61) VI@ + 51” + 8 + 
1/Z 

assin 'p (a2 + <12)x 8 

According to (2.3), the quantity v, represents the coefficient of reflec- 
tion of a strong magneto-acoustic wave from the boundary between media with 
infinite conductivity. The first term of Expression (3.4) corresponds to a 
reflected pulse of the same form as the Incident one. The remaining terms 
correspond to pulses of changing form. 

Putting c*= 0 ) we determine from (3.3) the pressure at the front of the 
reflected pulse 

Pl (0) = WlOP (0) - '/2 I/qpy" CSCCp {1/l/, 3.X / pE - Jt [COS pe-(COS BE - Sill@) 

C (l/m - (cos Be + sin pe) S(1/@)] + ci@e)sin /3e-si (pe) co9 Be} (3.5) 

p (0) = 1 /e 

Here, S(x) and C(X) are Fresnel Integrals, sl(r) and ci(x) are the 
Integral sine and cosine. 

For every narrow pulses (e + 0), Equation (3.5) gives 

Pl(Q = WlOP (0) - * I/l/a XP (0) (3.6) 

For Be>>1 we have from (3.4), 

p1 (0) = V,P (0) + n v~~s~z~el P”‘(O) (3.7) 

The dependence of the coefficients W,, W, and W, on frequency la the 
same as In W, . The formulas for the second reflected pulse and the pulses 
transmitted into the elastic medium are analogous to (3.3) to (3.7) 

1. 

2. 

3. 

4. 

5. 

6. 
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